Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano
1.
J Med Virol ; : e28310, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: covidwho-2232718

RESUMO

Cellular infections by DNA viruses trigger innate immune responses mediated by DNA sensors. The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon gene (STING) signaling pathway has been identified as a DNA-sensing pathway that activates interferons in response to viral infection and, thus, mediates host defense against viruses. Previous studies have identified oncogenes E7 and E1A of the DNA tumor viruses, human papillomavirus 18 (HPV18) and adenovirus, respectively, as inhibitors of the cGAS-STING pathway. However, the function of STING in infected cells and the mechanism by which HPV18 E7 antagonizes STING-induced Interferon beta production remain unknown. We report that HPV18 E7 selectively antagonizes STING-triggered nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation but not IRF3 activation. HPV18 E7 binds to STING in a region critical for NF-κB activation and blocks the nuclear accumulation of p65. Moreover, E7 inhibition of STING-triggered NF-κB activation is related to HPV pathogenicity but not E7-Rb binding. HPV18 E7, severe acute respiratory syndrome coronavirus-2 open reading frame 3a, human immunodeficiency virus-2 viral protein X, and Kaposi's sarcoma-associated herpesvirus KSHV viral interferon regulatory factor 1 selectively inhibited STING-triggered NF-κB or IRF3 activation, suggesting a convergent evolution among these viruses toward antagonizing host innate immunity. Collectively, selective suppression of the cGAS-STING pathway by viral proteins is likely to be a key pathogenic determinant, making it a promising target for treating oncogenic virus-induced tumor diseases.

2.
Signal Transduct Target Ther ; 6(1): 123, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: covidwho-1135650

RESUMO

The emergence of SARS-CoV-2 has resulted in the COVID-19 pandemic, leading to millions of infections and hundreds of thousands of human deaths. The efficient replication and population spread of SARS-CoV-2 indicates an effective evasion of human innate immune responses, although the viral proteins responsible for this immune evasion are not clear. In this study, we identified SARS-CoV-2 structural proteins, accessory proteins, and the main viral protease as potent inhibitors of host innate immune responses of distinct pathways. In particular, the main viral protease was a potent inhibitor of both the RLR and cGAS-STING pathways. Viral accessory protein ORF3a had the unique ability to inhibit STING, but not the RLR response. On the other hand, structural protein N was a unique RLR inhibitor. ORF3a bound STING in a unique fashion and blocked the nuclear accumulation of p65 to inhibit nuclear factor-κB signaling. 3CL of SARS-CoV-2 inhibited K63-ubiquitin modification of STING to disrupt the assembly of the STING functional complex and downstream signaling. Diverse vertebrate STINGs, including those from humans, mice, and chickens, could be inhibited by ORF3a and 3CL of SARS-CoV-2. The existence of more effective innate immune suppressors in pathogenic coronaviruses may allow them to replicate more efficiently in vivo. Since evasion of host innate immune responses is essential for the survival of all viruses, our study provides insights into the design of therapeutic agents against SARS-CoV-2.


Assuntos
Imunidade Inata , Proteínas de Membrana/imunologia , Nucleotidiltransferases/imunologia , RNA Viral/imunologia , SARS-CoV-2/imunologia , Transdução de Sinais/imunologia , Proteínas Virais/imunologia , Células A549 , Animais , Galinhas , Células HEK293 , Células HeLa , Humanos , Ligases/imunologia , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA